Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dirubidium digallium oxide bis(orthoborate)

Robert W. Smith,^a* Chunhua Hu^b and Christopher D. DeSpain^a

^aDepartment of Chemistry, University of Nebraska at Omaha, Omaha, NE 68182-0109, USA, and ^bNebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588-0304, USA Correspondence e-mail: robertsmith@mail.unomaha.edu

Received 8 February 2008; accepted 29 February 2008

Key indicators: single-crystal X-ray study; T = 297 K; mean σ (O–B) = 0.010 Å; R factor = 0.037; wR factor = 0.091; data-to-parameter ratio = 13.3.

The title compound, $Rb_2Ga_2O(BO_3)_2$, is part of the homologous series $A_2Ga_2O(BO_3)_2$ (A = Na, K, Rb and Cs). The structure contains pairs of gallium-centered tetrahedra connected through a shared oxygen vertex. Orthoborate triangles connect the basal vertices of the tetrahedra, forming a three-dimensional network with voids occupied by rubidium ions.

Related literature

For related literature, see: Chen *et al.* (2004); Corbel & Leblanc (2000); Smith (1995, 1997).

Experimental

Crystal data

 $\begin{aligned} & \text{Rb}_2\text{Ga}_2\text{O}(\text{BO}_3)_2 \\ & M_r = 444.00 \\ & \text{Monoclinic, } P2_1/c \\ & a = 8.8115 \ (18) \text{ Å} \\ & b = 7.7224 \ (16) \text{ Å} \\ & c = 11.997 \ (3) \text{ Å} \\ & \beta = 104.246 \ (4)^\circ \end{aligned}$

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: numerical (*SADABS*; Sheldrick, 2003) *T*_{min} = 0.118, *T*_{max} = 0.429 V = 791.3 (3) Å³ Z = 4 Mo Kα radiation μ = 19.03 mm⁻¹ T = 297 (2) K 0.23 × 0.21 × 0.19 mm

8611 measured reflections 1568 independent reflections 1151 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.093$

Refinement	ŧ
nephonon	

```
\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.037 & 118 \text{ parameters} \\ wR(F^2) = 0.091 & \Delta\rho_{\max} = 1.28 \text{ e } \text{\AA}^{-3} \\ S = 1.05 & \Delta\rho_{\min} = -0.90 \text{ e } \text{\AA}^{-3} \\ 1568 \text{ reflections} & \end{array}
```

Table 1

Selected geometric parameters (Å, °).

Ga1–O3 ⁱ	1.834 (5)	Ga2-O7	1.810 (5)
Ga1–O4 ⁱⁱ	1.834 (5)	B1-O1	1.376 (10)
Ga1-O6	1.831 (5)	$B1 - O2^{v}$	1.370 (10)
Ga1-O7 ⁱⁱⁱ	1.790 (5)	B1-O3	1.358 (10)
Ga2-O1	1.840 (5)	B2-O4	1.366 (9)
Ga2–O2 ⁱⁱⁱ	1.838 (5)	B2-O5	1.395 (9)
Ga2–O5 ^{iv}	1.832 (5)	B2-O6 ⁱⁱⁱ	1.341 (10)
O7 ⁱⁱⁱ -Ga1-O6	110.8 (2)	O7-Ga2-O1	112.5 (2)
O7 ⁱⁱⁱ -Ga1-O4 ⁱⁱ	110.4 (2)	O5 ^{iv} -Ga2-O1	109.3 (2)
O6–Ga1–O4 ⁱⁱ	114.5 (2)	O2 ⁱⁱⁱ -Ga2-O1	105.7 (2)
O7 ⁱⁱⁱ -Ga1-O3 ⁱ	110.4 (2)	$O3-B1-O2^{v}$	119.4 (7)
O6-Ga1-O3 ⁱ	105.7 (2)	O3-B1-O1	117.8 (8)
O4 ⁱⁱ -Ga1-O3 ⁱ	104.8 (2)	$O2^{v} - B1 - O1$	122.7 (7)
O7-Ga2-O5 ^{iv}	109.3 (2)	$O6^{iii}$ -B2-O4	124.7 (7)
O7-Ga2-O2 ⁱⁱⁱ	109.5 (2)	$O6^{iii}$ -B2-O5	116.3 (7)
O5 ^{iv} -Ga2-O2 ⁱⁱⁱ	110.6 (2)	O4-B2-O5	119.0 (7)

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{1}{2}$; (ii) x + 1, y, z; (iii) -x + 1, -y, -z + 1; (iv) $x, -y + \frac{1}{2}, z + \frac{1}{2}$; (v) x, y, z + 1.

Data collection: *SMART* (Bruker, 2005); cell refinement: *SAINT-Plus* (Bruker, 2003); data reduction: *SAINT-Plus*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *DIAMOND* (Brandenburg & Putz, 2007); software used to prepare material for publication: *SHELXTL*.

This work was supported by the Nebraska Research Initiative.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: MG2048).

References

Brandenburg, K. & Putz, H. (2007). DIAMOND. Crystal Impact, Bonn, Germany.
Bruker (2003). SAINT-Plus. Bruker AXS Inc., Madison, Wisconson, USA.
Bruker (2005). SMART. Bruker AXS Inc., Madison, Wisconson, USA.
Chen, C., Lin, Z. & Wang, Z. (2004). Appl. Phys. B80, 1–25.
Corbel, G. & Leblanc, M. (2000). J. Solid State Chem. 154, 344–349.
Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Smith, R. W. (1995). Acta Cryst. C51, 547–549.
Smith, R. W., Kennard, M. A. & Dudik, M. J. (1997). Mater. Res. Bull. 32, 649–656.

Acta Cryst. (2008). E64, i23 [doi:10.1107/S1600536808005783]

Dirubidium digallium oxide bis(orthoborate)

R. W. Smith, C. Hu and C. D. DeSpain

Comment

Complex metal borates adopt various structure types that result from the many possible geometric arrangements formed by metal-centered polyhedra and borate anions, which can be either three- or four-coordinate. They are also of interest as nonlinear optical materials, such as β -BaB₂O₄, LiB₃O₅, and YAl₃(BO₃)₄ (Chen *et al.*, 2004). For these reasons, we have examined the phase diagrams of alkali metal gallium borates and have determined the crystal structures of some of the materials discovered. The homologous series A₂Ga₂O(BO₃)₂ (A = Na, K, Rb, Cs) is a portion of the new compounds discovered to date. In each, pairs of gallium-centered tetrahedra are connected through a shared oxygen vertex, and the tetrahedral basal planes are connected through shared oxygen vertices with triangular orthoborate anions. Depending on the size of the alkali metal ions, which occupy channels or spaces within the three-dimensional network, the compounds crystallize in different space groups: *P*31*c* for the Na member (Corbel & Leblanc, 2000), P321 for the K member (Smith *et al.*, 1997), and *P*2₁/*c* for the Cs member (Smith, 1995), which is isotypic with the Rb compound reported herein (Fig. 1).

Experimental

Powders of $Rb_2Ga_2O(BO_3)_2$ were prepared from stoichiometric mixtures of $RbNO_3$, $Ga(NO_3)_3$, and H_3BO_3 , which were decomposed in alumina crucibles at 300 °C and then heated to 500 °C at 50 °C increments, with a soak of several hours at each temperature and intermediate grinding between each soak period. Crystals were grown in a platinum dish from a 1:1 molar mixture of the prepared powder in the presence of Rb_3BO_3 flux. The mixture was heated to 700 °C and cooled at 10 °C/hour to room temperature, and a single-crystal was cut from the crystal mass for subsequent X-ray diffraction analysis.

Refinement

The highest peak and the deepest hole are located 0.74 Å and 1.13 Å, respectively, from Rb2.

Figures

Fig. 1. View of the unit cell along the b axis. Displacement ellipsoids are drawn at the 50% probability level.

dirubidium digallium oxide bis(orthoborate)

Crystal data

Rb₂Ga₂O(BO₃)₂ $M_r = 444.00$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 8.8115 (18) Å b = 7.7224 (16) Å c = 11.997 (3) Å $\beta = 104.246$ (4)° V = 791.3 (3) Å³ Z = 4

Data collection

Bruker SMART APEX CCD diffractometer	1568 independent reflections
Radiation source: fine-focus sealed tube	1151 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.093$
T = 297(2) K	$\theta_{\text{max}} = 26.1^{\circ}$
ω scans	$\theta_{\min} = 2.4^{\circ}$
Absorption correction: numerical (SADABS; Sheldrick, 2003)	$h = -10 \rightarrow 10$
$T_{\min} = 0.118, \ T_{\max} = 0.429$	$k = -9 \rightarrow 9$
8611 measured reflections	$l = -14 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.037$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0376P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
$wR(F^2) = 0.091$	$(\Delta/\sigma)_{max} < 0.001$
<i>S</i> = 1.05	$\Delta \rho_{max} = 1.28 \text{ e} \text{ Å}^{-3}$
1568 reflections	$\Delta \rho_{min} = -0.90 \text{ e } \text{\AA}^{-3}$
118 parameters	Extinction correction: none

 $F_{000} = 808$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 3.7 - 25.7^{\circ}$

 $\mu = 19.03 \text{ mm}^{-1}$

Block, colorless

 $0.23\times0.21\times0.19~mm$

T = 297 (2) K

 $D_{\rm x} = 3.727 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 1660 reflections

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
0.05407 (9)	0.12523 (11)	0.15061 (7)	0.0276 (2)
0.53288 (9)	0.12728 (10)	0.62677 (7)	0.0265 (2)
0.84630 (9)	0.12201 (10)	0.38547 (7)	0.0183 (2)
0.31410 (9)	0.06933 (11)	0.86673 (8)	0.0191 (2)
0.6554 (10)	0.0915 (10)	0.9123 (8)	0.0166 (19)
0.1834 (10)	0.1269 (11)	0.4388 (8)	0.0181 (18)
0.5159 (5)	0.0083 (6)	0.8667 (5)	0.0221 (13)
0.7394 (6)	0.0677 (7)	0.0235 (4)	0.0249 (13)
0.7155 (6)	0.1924 (7)	0.8410 (5)	0.0261 (13)
0.0442 (5)	0.2139 (6)	0.4178 (5)	0.0247 (13)
0.3091 (5)	0.2014 (6)	0.4049 (5)	0.0215 (12)
0.7902 (6)	0.0280 (7)	0.5097 (5)	0.0286 (14)
0.1781 (6)	0.0322 (7)	0.7290 (5)	0.0248 (12)
	x 0.05407 (9) 0.53288 (9) 0.84630 (9) 0.31410 (9) 0.6554 (10) 0.1834 (10) 0.5159 (5) 0.7394 (6) 0.7155 (6) 0.0442 (5) 0.3091 (5) 0.7902 (6) 0.1781 (6)	x y 0.05407 (9) 0.12523 (11) 0.53288 (9) 0.12728 (10) 0.84630 (9) 0.12201 (10) 0.31410 (9) 0.06933 (11) 0.6554 (10) 0.0915 (10) 0.1834 (10) 0.1269 (11) 0.5159 (5) 0.0083 (6) 0.7394 (6) 0.0677 (7) 0.7155 (6) 0.1924 (7) 0.0442 (5) 0.2139 (6) 0.3091 (5) 0.2014 (6) 0.7902 (6) 0.0280 (7) 0.1781 (6) 0.0322 (7)	x y z $0.05407 (9)$ $0.12523 (11)$ $0.15061 (7)$ $0.53288 (9)$ $0.12728 (10)$ $0.62677 (7)$ $0.84630 (9)$ $0.12201 (10)$ $0.38547 (7)$ $0.31410 (9)$ $0.06933 (11)$ $0.86673 (8)$ $0.6554 (10)$ $0.0915 (10)$ $0.9123 (8)$ $0.1834 (10)$ $0.1269 (11)$ $0.4388 (8)$ $0.5159 (5)$ $0.0083 (6)$ $0.8667 (5)$ $0.7394 (6)$ $0.0677 (7)$ $0.0235 (4)$ $0.7155 (6)$ $0.1924 (7)$ $0.8410 (5)$ $0.0442 (5)$ $0.2014 (6)$ $0.4049 (5)$ $0.3091 (5)$ $0.2014 (6)$ $0.4049 (5)$ $0.7902 (6)$ $0.0322 (7)$ $0.7290 (5)$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Rb1	0.0180 (4)	0.0338 (5)	0.0310 (5)	-0.0050 (3)	0.0063 (4)	-0.0004 (4)
Rb2	0.0225 (4)	0.0282 (4)	0.0260 (5)	0.0032 (3)	0.0008 (3)	-0.0024 (4)
Gal	0.0125 (4)	0.0193 (4)	0.0237 (5)	0.0007 (3)	0.0055 (4)	0.0004 (4)
Ga2	0.0122 (4)	0.0203 (4)	0.0252 (5)	-0.0007 (3)	0.0052 (4)	0.0005 (4)
B1	0.017 (4)	0.011 (4)	0.026 (5)	0.003 (3)	0.014 (4)	0.000 (4)
B2	0.015 (4)	0.017 (4)	0.022 (5)	0.000 (3)	0.005 (4)	0.002 (4)
O1	0.008 (3)	0.022 (3)	0.037 (4)	-0.001 (2)	0.007 (2)	-0.005 (2)
O2	0.016 (3)	0.031 (3)	0.025 (3)	-0.008 (2)	0.002 (2)	0.010 (3)
O3	0.024 (3)	0.024 (3)	0.029 (3)	-0.012 (2)	0.004 (3)	0.000 (3)
O4	0.008 (3)	0.023 (3)	0.043 (4)	-0.006 (2)	0.008 (2)	0.001 (3)
O5	0.011 (3)	0.021 (3)	0.035 (3)	0.001 (2)	0.011 (2)	0.004 (2)
O6	0.029 (3)	0.024 (3)	0.040 (4)	0.004 (2)	0.023 (3)	0.010 (3)
O7	0.019 (3)	0.026 (3)	0.026 (3)	0.003 (2)	-0.001 (2)	-0.006 (3)

Geometric parameters (Å, °)

Rb1—O2 ⁱ	2.851 (5)	Ga2—O2 ^{iv}	1.838 (5)
Rb1—O7 ⁱⁱ	2.928 (5)	Ga2—O5 ^{viii}	1.832 (5)
Rb1—O7 ⁱⁱⁱ	3.034 (5)	Ga2—O7	1.810 (5)
Rb1—O4 ⁱⁱ	3.039 (5)	Ga2—Rb1 ⁱⁱⁱ	3.5346 (12)

Rb1—O3 ^{iv}	3.170 (5)	Ga2—Rb2 ^{xiii}	3.6641 (13)
Rb1—B1 ^{iv}	3.298 (8)	Ga2—Rb1 ^{viii}	3.8226 (12)
Rb1—O4	3.300 (6)	Ga2—Rb2 ^{viii}	3.9973 (13)
Rb1—O4 ^v	3.341 (5)	B1—O1	1.376 (10)
Rb1—B2	3.363 (9)	B1—O2 ^{xiv}	1.370 (10)
Rb1—O5	3.365 (5)	B1—O3	1.358 (10)
Rb1—O2 ^{vi}	3.430 (6)	B1—Rb1 ^{iv}	3.298 (8)
Rb1—Ga2 ⁱⁱⁱ	3.5346 (12)	B1—Rb2 ^{viii}	3.724 (8)
Rb2—O3	2.722 (5)	B2—O4	1.366 (9)
Rb2—O5	2.953 (5)	B2—O5	1.395 (9)
Rb2—O5 ^{iv}	2.964 (5)	$B2-O6^{iv}$	1.341 (10)
Rb2—O1 ^{vii}	2.977 (5)	B2—Rb2 ^{iv}	3.419 (8)
Rb2—O6	3.045 (5)	B2—Rb1 ^{viii}	3.584 (9)
Rb2—O1	3.060 (5)	O1—Rb2 ^{xiii}	2.977 (5)
Rb2—O6 ^{iv}	3.151 (6)	O2—B1 ^{xv}	1.370 (10)
Rb2—B2	3.340 (9)	O2—Ga2 ^{iv}	1.838 (5)
Rb2—B1	3.340 (9)	O2—Rb1 ^{ix}	2.851 (5)
Rb2—O2 ^{viii}	3.392 (6)	O2—Rb2 ⁱⁱ	3.392 (6)
Rb2—B2 ^{iv}	3.419 (8)	O2—Rb1 ^{vi}	3.430 (6)
Rb2—Rb2 ^{iv}	3.5477 (17)	O3—Ga1 ^{viii}	1.834 (5)
Ga1—O3 ⁱⁱ	1.834 (5)	O3—Rb1 ^{iv}	3.170 (5)
Ga1—O4 ^{ix}	1.834 (5)	O4—Ga1 ⁱ	1.834 (5)
Ga1—O6	1.831 (5)	O4—Rb1 ^{viii}	3.039 (5)
Ga1—O7 ^{iv}	1.790 (5)	O4—Rb1 ^{xvi}	3.341 (5)
Ga1—Rb1 ^{ix}	3.7189 (13)	O5—Ga2 ⁱⁱ	1.832 (5)
Ga1—Rb1 ^x	3.7966 (13)	O5—Rb2 ^{iv}	2.964 (5)
Ga1—Rb2 ^{iv}	3.8275 (13)	O6—B2 ^{iv}	1.341 (10)
Ga1—Rb1 ^{xi}	3.9828 (14)	O6—Rb2 ^{iv}	3.151 (6)
Ga1—Rb1 ^{xii}	4.0307 (14)	O7—Ga1 ^{iv}	1.790 (5)
Ga1—Rb2 ⁱⁱ	4.0975 (12)	O7—Rb1 ^{viii}	2.928 (5)
Ga2—O1	1.840 (5)	O7—Rb1 ⁱⁱⁱ	3.034 (5)
O2 ⁱ —Rb1—O7 ⁱⁱ	123.34 (15)	Rb1 ^x —Ga1—Rb2 ^{iv}	121.81 (3)
O2 ⁱ —Rb1—O7 ⁱⁱⁱ	60.74 (14)	O7 ^{iv} —Ga1—Rb1 ^{xi}	42.60 (17)
O7 ⁱⁱ —Rb1—O7 ⁱⁱⁱ	116.83 (11)	O6—Ga1—Rb1 ^{xi}	79.48 (16)
O2 ⁱ —Rb1—O4 ⁱⁱ	76.60 (14)	O4 ^{ix} —Ga1—Rb1 ^{xi}	99.91 (16)
O7 ⁱⁱ —Rb1—O4 ⁱⁱ	81.35 (14)	O3 ⁱⁱ —Ga1—Rb1 ^{xi}	149.37 (17)
O7 ⁱⁱⁱ —Rb1—O4 ⁱⁱ	137.01 (13)	Rb1 ^{ix} —Ga1—Rb1 ^{xi}	76.19 (2)
O2 ⁱ —Rb1—O3 ^{iv}	115.30 (15)	Rb1 ^x —Ga1—Rb1 ^{xi}	120.83 (2)
O7 ⁱⁱ —Rb1—O3 ^{iv}	120.23 (13)	Rb2 ^{iv} —Ga1—Rb1 ^{xi}	74.04 (2)
O7 ⁱⁱⁱ —Rb1—O3 ^{iv}	100.16 (13)	O7 ^{iv} —Ga1—Rb1 ^{xii}	123.18 (18)
O4 ⁱⁱ —Rb1—O3 ^{iv}	102.65 (13)	O6—Ga1—Rb1 ^{xii}	125.38 (17)

$O2^{i}$ —Rb1—B1 ^{iv}	120.40 (19)	O4 ^{ix} —Ga1—Rb1 ^{xii}	55.16 (16)
O7 ⁱⁱ —Rb1—B1 ^{iv}	106.42 (17)	O3 ⁱⁱ —Ga1—Rb1 ^{xii}	49.70 (17)
O7 ⁱⁱⁱ —Rb1—B1 ^{iv}	123.92 (17)	Rb1 ^{ix} —Ga1—Rb1 ^{xii}	75.60 (2)
O4 ⁱⁱ —Rb1—B1 ^{iv}	81.11 (18)	Rb1 ^x —Ga1—Rb1 ^{xii}	61.41 (3)
O3 ^{iv} —Rb1—B1 ^{iv}	24.13 (17)	Rb2 ^{iv} —Ga1—Rb1 ^{xii}	133.78 (3)
O2 ⁱ —Rb1—O4	107.29 (14)	Rb1 ^{xi} —Ga1—Rb1 ^{xii}	149.02 (3)
O7 ⁱⁱ —Rb1—O4	66.27 (13)	O7 ^{iv} —Ga1—Rb2 ⁱⁱ	78.58 (17)
O7 ⁱⁱⁱ —Rb1—O4	55.84 (13)	O6—Ga1—Rb2 ⁱⁱ	122.49 (17)
O4 ⁱⁱ —Rb1—O4	143.75 (4)	O4 ^{ix} —Ga1—Rb2 ⁱⁱ	113.96 (17)
O3 ^{iv} —Rb1—O4	107.42 (13)	O3 ⁱⁱ —Ga1—Rb2 ⁱⁱ	32.03 (17)
B1 ^{iv} —Rb1—O4	122.35 (19)	Rb1 ^{ix} —Ga1—Rb2 ⁱⁱ	77.80 (3)
O2 ⁱ —Rb1—O4 ^v	63.98 (14)	Rb1 ^x —Ga1—Rb2 ⁱⁱ	119.20 (3)
O7 ⁱⁱ —Rb1—O4 ^v	172.59 (13)	Rb2 ^{iv} —Ga1—Rb2 ⁱⁱ	77.84 (2)
$O7^{iii}$ —Rb1— $O4^{v}$	64.64 (13)	Rb1 ^{xi} —Ga1—Rb2 ⁱⁱ	119.89 (3)
O4 ⁱⁱ —Rb1—O4 ^v	102.47 (12)	Rb1 ^{xii} —Ga1—Rb2 ⁱⁱ	65.61 (2)
$O3^{iv}$ —Rb1— $O4^{v}$	52.94 (12)	O7—Ga2—O5 ^{viii}	109.3 (2)
$B1^{iv}$ —Rb1—O4 ^v	68.29 (16)	O7—Ga2—O2 ^{iv}	109.5 (2)
O4—Rb1—O4 ^v	111.63 (12)	O5 ^{viii} —Ga2—O2 ^{iv}	110.6 (2)
O2 ⁱ —Rb1—B2	126.09 (18)	O7—Ga2—O1	112.5 (2)
O7 ⁱⁱ —Rb1—B2	70.20 (18)	O5 ^{viii} —Ga2—O1	109.3 (2)
O7 ⁱⁱⁱ —Rb1—B2	67.02 (17)	O2 ^{iv} —Ga2—O1	105.7 (2)
O4 ⁱⁱ —Rb1—B2	150.35 (17)	O7—Ga2—Rb1 ⁱⁱⁱ	59.13 (17)
O3 ^{iv} —Rb1—B2	85.29 (17)	O5 ^{viii} —Ga2—Rb1 ⁱⁱⁱ	110.32 (14)
B1 ^{iv} —Rb1—B2	98.7 (2)	O2 ^{iv} —Ga2—Rb1 ⁱⁱⁱ	53.43 (16)
O4—Rb1—B2	23.63 (16)	O1—Ga2—Rb1 ⁱⁱⁱ	139.84 (15)
O4 ^v —Rb1—B2	104.94 (17)	O7—Ga2—Rb2 ^{xiii}	91.67 (16)
O2 ⁱ —Rb1—O5	148.92 (14)	O5 ^{viii} —Ga2—Rb2 ^{xiii}	157.90 (16)
O7 ⁱⁱ —Rb1—O5	55.79 (13)	O2 ^{iv} —Ga2—Rb2 ^{xiii}	66.83 (17)
O7 ⁱⁱⁱ —Rb1—O5	90.94 (13)	O1—Ga2—Rb2 ^{xiii}	53.89 (15)
O4 ⁱⁱ —Rb1—O5	128.56 (13)	Rb1 ⁱⁱⁱ —Ga2—Rb2 ^{xiii}	86.15 (3)
O3 ^{iv} —Rb1—O5	80.03 (13)	O7—Ga2—Rb1 ^{viii}	47.68 (16)
B1 ^{iv} —Rb1—O5	85.03 (18)	O5 ^{viii} —Ga2—Rb1 ^{viii}	61.69 (16)
O4—Rb1—O5	41.80 (11)	O2 ^{iv} —Ga2—Rb1 ^{viii}	128.63 (16)
O4 ^v —Rb1—O5	117.62 (12)	O1—Ga2—Rb1 ^{viii}	125.18 (17)
B2—Rb1—O5	23.93 (16)	Rb1 ⁱⁱⁱ —Ga2—Rb1 ^{viii}	80.45 (2)
$O2^{i}$ —Rb1— $O2^{vi}$	101.45 (12)	Rb2 ^{xiii} —Ga2—Rb1 ^{viii}	138.19 (3)
O7 ⁱⁱ —Rb1—O2 ^{vi}	112.08 (14)	O7—Ga2—Rb2	71.19 (17)
O7 ⁱⁱⁱ —Rb1—O2 ^{vi}	129.57 (13)	O5 ^{viii} —Ga2—Rb2	96.97 (15)
O4 ⁱⁱ —Rb1—O2 ^{vi}	61.13 (12)	O2 ^{iv} —Ga2—Rb2	149.64 (18)
O3 ^{iv} —Rb1—O2 ^{vi}	41.56 (13)	O1—Ga2—Rb2	50.97 (17)
B1 ^{iv} —Rb1—O2 ^{vi}	23.39 (18)	Rb1 ⁱⁱⁱ —Ga2—Rb2	128.63 (3)

O4—Rb1—O2 ^{vi}	145.74 (12)	Rb2 ^{xiii} —Ga2—Rb2	82.84 (2)
O4 ^v —Rb1—O2 ^{vi}	65.28 (12)	Rb1 ^{viii} —Ga2—Rb2	75.46 (3)
B2—Rb1—O2 ^{vi}	122.11 (17)	O7—Ga2—Rb2 ^{viii}	152.81 (16)
O5—Rb1—O2 ^{vi}	106.98 (12)	O5 ^{viii} —Ga2—Rb2 ^{viii}	43.56 (16)
O2 ⁱ —Rb1—Ga2 ⁱⁱⁱ	31.19 (10)	O2 ^{iv} —Ga2—Rb2 ^{viii}	86.43 (17)
O7 ⁱⁱ —Rb1—Ga2 ⁱⁱⁱ	131.89 (11)	O1—Ga2—Rb2 ^{viii}	82.52 (16)
O7 ⁱⁱⁱ —Rb1—Ga2 ⁱⁱⁱ	30.80 (10)	Rb1 ⁱⁱⁱ —Ga2—Rb2 ^{viii}	123.67 (3)
O4 ⁱⁱ —Rb1—Ga2 ⁱⁱⁱ	107.55 (9)	Rb2 ^{xiii} —Ga2—Rb2 ^{viii}	115.16 (3)
O3 ^{iv} —Rb1—Ga2 ⁱⁱⁱ	104.14 (9)	Rb1 ^{viii} —Ga2—Rb2 ^{viii}	105.14 (3)
B1 ^{iv} —Rb1—Ga2 ⁱⁱⁱ	121.58 (14)	Rb2—Ga2—Rb2 ^{viii}	106.28 (3)
O4—Rb1—Ga2 ⁱⁱⁱ	84.39 (8)	O3—B1—O2 ^{xiv}	119.4 (7)
O4 ^v —Rb1—Ga2 ⁱⁱⁱ	53.33 (8)	O3—B1—O1	117.8 (8)
B2—Rb1—Ga2 ⁱⁱⁱ	97.81 (14)	O2 ^{xiv} —B1—O1	122.7 (7)
O5—Rb1—Ga2 ⁱⁱⁱ	121.74 (8)	O3—B1—Rb1 ^{iv}	72.7 (4)
O2 ^{vi} —Rb1—Ga2 ⁱⁱⁱ	113.35 (9)	O2 ^{xiv} —B1—Rb1 ^{iv}	83.7 (4)
O3—Rb2—O5	157.47 (16)	O1—B1—Rb1 ^{iv}	109.9 (4)
O3—Rb2—O5 ^{iv}	95.27 (15)	O3—B1—Rb2	52.0 (4)
O5—Rb2—O5 ^{iv}	106.33 (12)	O2 ^{xiv} —B1—Rb2	166.2 (5)
O3—Rb2—O1 ^{vii}	81.27 (15)	O1—B1—Rb2	66.4 (4)
O5—Rb2—O1 ^{vii}	76.31 (14)	Rb1 ^{iv} —B1—Rb2	83.14 (19)
O5 ^{iv} —Rb2—O1 ^{vii}	157.67 (13)	O3—B1—Rb2 ^{viii}	109.0 (5)
O3—Rb2—O6	98.49 (16)	O2 ^{xiv} —B1—Rb2 ^{viii}	65.4 (4)
O5—Rb2—O6	92.34 (14)	O1—B1—Rb2 ^{viii}	99.5 (4)
O5 ^{iv} —Rb2—O6	45.46 (13)	Rb1 ^{iv} —B1—Rb2 ^{viii}	145.8 (3)
O1 ^{vii} —Rb2—O6	112.93 (14)	Rb2—B1—Rb2 ^{viii}	125.8 (2)
O3—Rb2—O1	47.31 (13)	O6 ^{iv} —B2—O4	124.7 (7)
O5—Rb2—O1	136.88 (12)	O6 ^{iv} —B2—O5	116.3 (7)
O5 ^{iv} —Rb2—O1	89.80 (13)	O4—B2—O5	119.0 (7)
O1 ^{vii} —Rb2—O1	103.37 (11)	O6 ^{iv} —B2—Rb2	70.3 (4)
O6—Rb2—O1	124.94 (13)	O4—B2—Rb2	139.5 (5)
$O3$ —Rb2— $O6^{iv}$	144.03 (14)	O5—B2—Rb2	62.0 (4)
$O5$ —Rb2— $O6^{iv}$	44.59 (13)	O6 ^{iv} —B2—Rb1	116.6 (5)
$O5^{iv}$ —Rb2— $O6^{iv}$	90.03 (13)	O4—B2—Rb1	75.6 (4)
O1 ^{vii} —Rb2—O6 ^{iv}	105.77 (13)	O5—B2—Rb1	78.1 (4)
O6—Rb2—O6 ^{iv}	110.17 (11)	Rb2—B2—Rb1	135.8 (3)
O1—Rb2—O6 ^{iv}	97.31 (13)	$O6^{iv}$ —B2—Rb2 ^{iv}	62.6 (4)
O3—Rb2—B2	150.50 (19)	O4—B2—Rb2 ^{iv}	156.1 (6)
O5—Rb2—B2	24.64 (17)	O5—B2—Rb2 ^{iv}	59.4 (4)
O5 ^{iv} —Rb2—B2	107.28 (18)	Rb2—B2—Rb2 ^{iv}	63.31 (15)
O1 ^{vii} —Rb2—B2	84.46 (17)	Rb1—B2—Rb2 ^{iv}	80.99 (19)
O6—Rb2—B2	110.85 (19)	O6 ^{iv} —B2—Rb1 ^{viii}	101.5 (5)

O1—Rb2—B2	112.62 (17)	O4—B2—Rb1 ^{viii}	56.0 (4)
O6 ^{iv} —Rb2—B2	23.61 (16)	O5—B2—Rb1 ^{viii}	113.6 (5)
O3—Rb2—B1	23.13 (17)	Rb2—B2—Rb1 ^{viii}	85.5 (2)
O5—Rb2—B1	156.39 (16)	Rb1—B2—Rb1 ^{viii}	130.1 (2)
O5 ^{iv} —Rb2—B1	90.97 (16)	Rb2 ^{iv} —B2—Rb1 ^{viii}	148.0 (3)
O1 ^{vii} —Rb2—B1	93.85 (17)	B1—O1—Ga2	130.5 (5)
O6—Rb2—B1	111.28 (17)	B1—O1—Rb2 ^{xiii}	124.9 (4)
O1—Rb2—B1	24.32 (16)	Ga2—O1—Rb2 ^{xiii}	96.17 (18)
O6 ^{iv} —Rb2—B1	121.60 (17)	B1—O1—Rb2	89.3 (4)
B2—Rb2—B1	134.8 (2)	Ga2—O1—Rb2	101.2 (2)
O3—Rb2—O2 ^{viii}	88.32 (14)	Rb2 ^{xiii} —O1—Rb2	111.24 (16)
O5—Rb2—O2 ^{viii}	80.53 (13)	B1 ^{xv} —O2—Ga2 ^{iv}	127.1 (5)
O5 ^{iv} —Rb2—O2 ^{viii}	103.70 (12)	B1 ^{xv} —O2—Rb1 ^{ix}	136.1 (4)
O1 ^{vii} —Rb2—O2 ^{viii}	54.35 (12)	Ga2 ^{iv} —O2—Rb1 ^{ix}	95.4 (2)
O6—Rb2—O2 ^{viii}	58.60 (12)	B1 ^{xv} —O2—Rb2 ⁱⁱ	93.0 (4)
O1—Rb2—O2 ^{viii}	134.98 (13)	Ga2 ^{iv} —O2—Rb2 ⁱⁱ	83.28 (19)
O6 ^{iv} —Rb2—O2 ^{viii}	124.89 (13)	Rb1 ^{ix} —O2—Rb2 ⁱⁱ	103.59 (16)
B2—Rb2—O2 ^{viii}	104.03 (17)	B1 ^{xv} —O2—Rb1 ^{vi}	72.9 (4)
B1—Rb2—O2 ^{viii}	111.40 (16)	Ga2 ^{iv} —O2—Rb1 ^{vi}	117.0 (2)
O3—Rb2—B2 ^{iv}	91.56 (19)	Rb1 ^{ix} —O2—Rb1 ^{vi}	78.55 (12)
O5—Rb2—B2 ^{iv}	105.54 (18)	Rb2 ⁱⁱ —O2—Rb1 ^{vi}	159.51 (17)
O5 ^{iv} —Rb2—B2 ^{iv}	23.90 (16)	B1—O3—Ga1 ^{viii}	125.4 (5)
O1 ^{vii} —Rb2—B2 ^{iv}	133.78 (17)	B1—O3—Rb2	104.9 (5)
O6—Rb2—B2 ^{iv}	23.01 (17)	Ga1 ^{viii} —O3—Rb2	127.0 (2)
O1—Rb2—B2 ^{iv}	104.57 (17)	B1—O3—Rb1 ^{iv}	83.2 (4)
O6 ^{iv} —Rb2—B2 ^{iv}	106.29 (17)	Ga1 ^{viii} —O3—Rb1 ^{iv}	104.1 (2)
B2—Rb2—B2 ^{iv}	116.69 (15)	Rb2—O3—Rb1 ^{iv}	96.45 (16)
B1—Rb2—B2 ^{iv}	96.8 (2)	B2—O4—Ga1 ⁱ	127.8 (5)
O2 ^{viii} —Rb2—B2 ^{iv}	80.00 (16)	B2—O4—Rb1 ^{viii}	102.1 (5)
O3—Rb2—Rb2 ^{iv}	147.74 (12)	Gal ⁱ —O4—Rb1 ^{viii}	99.4 (2)
O5—Rb2—Rb2 ^{iv}	53.31 (10)	B2—O4—Rb1	80.8 (4)
O5 ^{iv} —Rb2—Rb2 ^{iv}	53.02 (10)	Gal ⁱ —O4—Rb1	88.01 (19)
O1 ^{vii} —Rb2—Rb2 ^{iv}	125.17 (11)	Rb1 ^{viii} —O4—Rb1	167.46 (17)
O6—Rb2—Rb2 ^{iv}	56.49 (11)	B2—O4—Rb1 ^{xvi}	132.8 (4)
O1—Rb2—Rb2 ^{iv}	127.20 (10)	Gal ⁱ —O4—Rb1 ^{xvi}	98.07 (19)
O6 ^{iv} —Rb2—Rb2 ^{iv}	53.68 (10)	Rb1 ^{viii} —O4—Rb1 ^{xvi}	77.53 (12)
B2—Rb2—Rb2 ^{iv}	59.44 (15)	Rb1—O4—Rb1 ^{xvi}	91.48 (13)
B1—Rb2—Rb2 ^{iv}	140.98 (13)	B2—O5—Ga2 ⁱⁱ	122.8 (5)
O2 ^{viii} —Rb2—Rb2 ^{iv}	93.49 (9)	B2—O5—Rb2	93.4 (4)
B2 ^{iv} —Rb2—Rb2 ^{iv}	57.25 (15)	Ga2 ⁱⁱ —O5—Rb2	111.1 (2)
O7 ^{iv} —Ga1—O6	110.8 (2)	B2—O5—Rb2 ^{iv}	96.7 (4)

O7 ^{iv} —Ga1—O4 ^{ix}	110.4 (2)	Ga2 ⁱⁱ —O5—Rb2 ^{iv}	139.0 (2)
O6—Ga1—O4 ^{ix}	114.5 (2)	Rb2—O5—Rb2 ^{iv}	73.67 (11)
O7 ^{iv} —Ga1—O3 ⁱⁱ	110.4 (2)	B2—O5—Rb1	77.9 (4)
O6—Ga1—O3 ⁱⁱ	105.7 (2)	Ga2 ⁱⁱ —O5—Rb1	89.68 (19)
O4 ^{ix} —Ga1—O3 ⁱⁱ	104.8 (2)	Rb2—O5—Rb1	158.76 (17)
O7 ^{iv} —Ga1—Rb1 ^{ix}	53.98 (17)	Rb2 ^{iv} —O5—Rb1	87.95 (13)
O6—Ga1—Rb1 ^{ix}	154.26 (16)	B2 ^{iv} —O6—Ga1	132.7 (5)
O4 ^{ix} —Ga1—Rb1 ^{ix}	62.46 (17)	B2 ^{iv} —O6—Rb2	94.4 (4)
O3 ⁱⁱ —Ga1—Rb1 ^{ix}	99.52 (17)	Ga1—O6—Rb2	131.0 (2)
O7 ^{iv} —Ga1—Rb1 ^x	157.95 (16)	B2 ^{iv} —O6—Rb2 ^{iv}	86.1 (4)
O6—Ga1—Rb1 ^x	72.13 (18)	Ga1—O6—Rb2 ^{iv}	96.8 (2)
O4 ^{ix} —Ga1—Rb1 ^x	52.16 (17)	Rb2—O6—Rb2 ^{iv}	69.83 (11)
O3 ⁱⁱ —Ga1—Rb1 ^x	88.92 (17)	Ga1 ^{iv} —O7—Ga2	137.2 (3)
Rb1 ^{ix} —Ga1—Rb1 ^x	113.93 (3)	Ga1 ^{iv} —O7—Rb1 ^{viii}	113.0 (2)
O7 ^{iv} —Ga1—Rb2 ^{iv}	72.36 (17)	Ga2—O7—Rb1 ^{viii}	105.1 (2)
O6—Ga1—Rb2 ^{iv}	54.84 (18)	Ga1 ^{iv} —O7—Rb1 ⁱⁱⁱ	97.5 (2)
O4 ^{ix} —Ga1—Rb2 ^{iv}	168.11 (17)	Ga2—O7—Rb1 ⁱⁱⁱ	90.1 (2)
O3 ⁱⁱ —Ga1—Rb2 ^{iv}	84.37 (17)	Rb1 ^{viii} —O7—Rb1 ⁱⁱⁱ	105.83 (16)
Rb1 ^{ix} —Ga1—Rb2 ^{iv}	124.20 (3)		

Symmetry codes: (i) x-1, y, z; (ii) x, -y+1/2, z-1/2; (iii) -x, -y, -z+1; (iv) -x+1, -y, -z+1; (v) -x, y-1/2, -z+1/2; (vi) -x+1, -y, -z; (vii) -x+1, y+1/2, -z+3/2; (viii) x, -y+1/2, z+1/2; (ix) x+1, y, z; (x) x+1, -y+1/2, z+1/2; (xi) -x+1, y-1/2, -z+1/2; (xii) -x+1, y+1/2, -z+1/2; (xiii) -x+1, y-1/2, -z+3/2; (xiv) x, y, z+1; (xv) x, y, z-1; (xvi) -x, y+1/2, -z+1/2; (xiii) -x+1, y-1/2, -z+1/2; (xiii) -x+1, y-1/2, -z+3/2; (xiv) x, y, z+1; (xv) x, y, z-1; (xvi) -x, y+1/2, -z+1/2.

Fig. 1